
The Devil
in The Details:
The Importance of SBOMs
in Protecting the Software
Supply Chain

• 2THE DEVIL IN THE DETAILS: The Importance Of SBOMs In Protecting The Software Supply Chain

When security researchers discovered in December 2020 that attackers had trojanized software updates in a
SolarWinds application, it was a rude introduction into software supply chain attacks for more than 18,000 businesses
and governmental agencies.

While SolarWinds is the largest and best known software supply chain attack thus far, it’s unfortunately not a unique
occurrence. The reality is that attacks against the software supply chain are one of the most pervasive threats that
companies face, with attackers launching almost 7,000 software supply chain attacks in just the past year, as bad
actors look for ways to steal data, corrupt targeted systems and gain access to other parts of the network through
lateral movement.

Software supply chain attacks occur when a bad actor infiltrates a software vendor’s network, employing malicious code
to compromise the software before the vendor sends it to a customer. The compromised software then compromises
the customer’s data or system. Newly acquired software may be compromised from the outset, or a compromise can
occur through a patch or hotfix. Such attacks affect all users of the compromised software and can have widespread
consequences for government, critical infrastructure and private sector software customers.

According to the European Union Agency for Cybersecurity (ENISA), almost 60 percent of supply chain attacks are
aimed at gaining access to data – including personal data and intellectual property – and around 16 percent of attacks
are an attempt to gain access to people. It should also be noted that in 66 percent of incidents, attackers focused on
suppliers’ code in order to further compromise targeted customers.

The software supply chain is made up of everything that goes into or affects code from development all the way until it’s
deployed into production. It includes code, binaries and other components as well as and includes information about
who wrote it, when it was contributed, how it’s been reviewed for security issues, known vulnerabilities, supported
versions, and license information – basically everything that touches it at any point.

Figure 1: Increase in Software Supply Attack Frequency

2015-2019 216 Attacks

929 Attacks
 +430% Increase

6,967 Attacks
 +650% Increase

2019-2020

2020-2021

• 3THE DEVIL IN THE DETAILS: The Importance Of SBOMs In Protecting The Software Supply Chain

Figure 2: Components of the Software Supply Chain

SOFTWARE
SUPPLY
CHAIN

Commercial and
open source libraries
used within software

Other software
tools running in the
software environment

Build/test
platforms

File or image hosts
(h3, Egnyte,
Docker Hub, etc.)

Code and binary
repositories

As shown in Figure 2, the software supply chain consists of every non-organic service or piece of software that’s used
to build software. Importantly, this includes components and packages that are open source – a massive undertaking
given the use of open source code bases has increased from 36 percent in 2015 to 75 percent in 2020.

Open source is extremely attractive to attackers, who implant malware directly into open source projects to infiltrate
the software supply chain. In the past, software supply chain exploits were used against publicly disclosed open
source vulnerabilities that were left unpatched. But instead of waiting for disclosures to pursue an exploit, attackers
now are choosing to inject new vulnerabilities into open source projects that feed the global supply chain – and then
exploit those vulnerabilities before they are discovered.

The growth in software supply chain attacks has – not surprisingly – resulted in a firestorm of activity on the part of
regulators and governmental organizations to determine how such attacks can be prevented.

A key facet for all of the regulatory agencies involved with securing the software supply chain is the demand for a
software bill of materials (SBOM), a formal record that contains the details and supply chain relationships of various
components that are used to build software.

Trust

Service External
Dependency

• 4THE DEVIL IN THE DETAILS: The Importance Of SBOMs In Protecting The Software Supply Chain

Timeline Of Regulatory Efforts To Address
Software Supply Chain Attacks

1 February 2021

President Biden issues an Executive Order (EO) laying out changes to secure all supply chains, including software,
calling for the secretaries of Commerce and Homeland Security to report on the security and integrity of critical
information and communications technology software supply chains.

4 May 2021

Biden signs a second EO for software supply chains as part of a critical look at the nation’s cybersecurity posture. It
requires NIST to create guidelines to secure the software supply chain, including the need for all critical software to
include a software bill of materials (SBOM).

6 July 2021

NIST publishes security measures for critical software use and minimum standards for vendors’ testing of their
software source code.

7 July 2021

The National Telecommunications and Information Administration (NTIA) releases the minimum elements needed for
an SBOM to improve transparency in software supply chains for both technology vendors and government customers.

5 June 2021

NIST defines critical software at having at least one of these attributes:
•	 Is designed to run with elevated privilege or manage privileges
•	 Has direct or privileged access to networking or computing resources
•	 Is designed to control access to data or operational technology
•	 Performs a function critical to trust
•	 Operates outside of normal trust boundaries with privileged access

2 February 2021

The CIO for the Department of Defense rolls out a new reference for Zero Trust Architecture (ZTA), including a section
centered on protecting applications and software supply chains.

3 April 2021

The National Institute of Standards and Technology (NIST) and the Cybersecurity and Infrastructure Security Agency
(CISA) release Defending Against Software Supply Chain Attacks, acknowledging that software compromised in supply
chain attacks could have widespread consequences. It outlines safeguards to secure the software supply chain,
including:
•	 Developing a written program to address software supply chain risk
•	 Inventorying organizational reliance on external software and code
•	 Assessing risk from vendors and adopting contractual and other safeguards
•	 Monitoring threats and vulnerabilities to the software supply chain

• 5THE DEVIL IN THE DETAILS: The Importance Of SBOMs In Protecting The Software Supply Chain

In order to mitigate open source risks, it’s essential to remediate open source
vulnerabilities as soon as they are discovered. However, in most cases it’s impractical
to fix all vulnerabilities, and some require major development work. You must prioritize
vulnerabilities, understand which ones represent a real risk, and provide development
and IT teams with the information that they need in order to quickly fix the most critical
vulnerabilities first. You must also help teams shift left and discover vulnerabilities
earlier, making remediation easier.

VULNERABILITY
REMEDIATION

The Challenge
Fast response is critical
When a new vulnerability is discovered, you must fix it fast before hackers exploit it.
However, many remediations require major development work.

Prioritization
In order to make remediation efficient, you must be able to quickly prioritize vulnerabilities that matter.

Open source component selection
The best remediation is avoiding insecure components when they are initially selected for
a project. This requires integrating security at early stages of development.

Locating vulnerabilities in the code
Once a vulnerability is discovered, it’s difficult to pinpoint where it is referenced in the code

Prioritization Analyzes how affected libraries are actually used in your code. Eliminates 70-80%
of vulnerability alerts which have no impact on the current project.

Pinpointing Vul-
nerabilities in
Code

Provides a complete trace analysis for each vulnerability. Shows which part of your
code touches the vulnerable functionality, down to the line number.

Shift Left
Scans popular repos, including GitHub repos using its GitHub integration
Browser extension gives developers information about components as they
browse the web

Shift Right Tracks the “Bill of Materials” of the latest build of every version you deploy. Alerts
teams in real-time if new vulnerabilities are reported, with remediation guidance.

Vulnerability
Remediation

Sources patches and suggested fixes from hundreds of trusted open source
communities. Offers developers multiple remediation options, with scoring.

Automated
Policy Enforcement

Enables granular policies per the project, product, app type, or organization.
Allows you to set policies for each stage of the SDLC: planning, development,
deployment, production. Policies can be conditional on security parameters such
as severity or a specific CVE.

Mend Offering - Vulnerability Remediation: Essential Features

• 6THE DEVIL IN THE DETAILS: The Importance Of SBOMs In Protecting The Software Supply Chain

It’s crucial to identify which open source components are in use in your software. To
fully manage open source security, licensing, and compliance issues, you must gain
visibility into open source code usage across all stages of the SDLC—from the selection
stage to development, deployment and production stages.

INVENTORY
MANAGEMENT

The Challenge
Manual inventory management is extremely time consuming
Developers spend precious time checking licenses and security and requesting approval.
These processes can be automated.
Support for multiple languages and frameworks
Automated tools must support all of the languages and frameworks used in your
organization to accurately track open source components.
It’s difficult to gather information about open source components
Information about open source components, versions and licenses is spread across hundreds of sources. Tracking
it manually is extremely complex.
Detecting transitive dependencies
Most open source components are dependant on other open source components,
creating complex dependency trees.

Languages and
frameworks
coverage

Supports over 200 languages, frameworks and development environments

Integrations
with DevOps tools

Integrates with IDEs, package managers, repos, build tools, CI servers and AST
tools. Alerts about problems and guides teams as they select and download
components.

Open Source
Components
Database

Doesn’t rely on proprietary data—aggregates information about open source
components from hundreds of sources, multiple times a day.

Dependency
Detection

Detects open source components based on SHA file signatures. Fully resolves
dependency tree and manifest files, including undeclared dependencies.

Automated
Policy Enforcemen

Automates selection, approval, and tracking of open source components.
Policies defined per SDLC stage, product, and organization.

Reporting Provides built-in reports at the project, product or organization level.
Open source Bill of Materials, due diligence report, risk and attribution reports.

Mend Offering - Inventory Management: Essential Features

*An attribution report tells you which components require you to publish attributions, crediting the project creators

• 7THE DEVIL IN THE DETAILS: The Importance Of SBOMs In Protecting The Software Supply Chain

You must establish an open source usage policy, and block inappropriate or
overly restrictive open source licenses. You must also ensure that you are
meeting license requirements for all of the open source components used
in your software. Management, security, legal teams, and third parties such
as investors conducting due diligence need complete visibility over open
source licensing.

OPEN SOURCE
LICENSE COMPLIANCE

The Challenge
Manual license management is extremely time consuming
Applications use thousands of open source components. Managing their licenses manually
creates overhead and slows down development.
Expert review is required in some cases
Even when using automated tools, there must be a way to perform a review for some types of licenses.
Inaccurate detection
Less advanced automated SCA tools do not always accurately detect licenses. Associating
libraries and licenses is not trivial. Missing problematic licenses can incur major costs later on.
False positives
Some SCA tools raise false alarms, placing a burden on teams, or miss problematic
licenses leading to liability.

Languages and
frameworks
coverage

Supports over 200 languages, frameworks and development environments

Accuracy
100% license detection accuracy unique ability to associate folders and libraries.
Shows licenses for the entire dependency tree. Supports multiple licenses for one
component.

Real-Time Alerts Alerts which license types are in your software, with a full risk analysis.
Offers suggestions for resolution based on organizational policies.

Shift Left
Provides a native Github integration—scans GitHub repos and discovers license
information. Provides a browser plugin that helps avoid problematic licenses at
the selection stage. Integrates with DevOps tools at all stages of the SDLC and
alerts about license issues.

Automated
Policy Enforcemen

Automates the license approval process. Extends license tracking and approval to
the full dependency tree of each package. Can automatically approve, reject, or
initiate a manual workflow, depending on license type.

Reporting and
Auditing

Offers a wide range of reports built for all relevant organizational roles. Provides
visibility for internal teams—R&D or IT management, security, legal, management.
Provides visibility for compliance auditors and due diligence investigators.

Mend Offering - License Compliance: Essential Features

• 8THE DEVIL IN THE DETAILS: The Importance Of SBOMs In Protecting The Software Supply Chain

EMPOWERING OPEN SOURCE AUTOMATION
WITH EFFECTIVE USAGE ANALYSIS

Automation of open source vulnerability management and license compliance is critical to solving the challenges we
outlined above. However, automated tools have their limitations.

Previous generations of SCA tools were able to detect open source components and tell organizations they have vulnerabilities
but were not able to identify the potential impact of those vulnerabilities. This required security and development teams to
invest many resources in investigation
and response to a large number of vulnerability reports.

Research has shown that of the vulnerabilities discovered, 70-85% were not really critical, because
the vulnerable open source code was not actually accessed or used by the organization’s proprietary code.

Mend pioneered the next generation of SCA with Effective Usage Analysis. This technology doesn’t just tell you what open
source components you have, but also how you use them. It lets you hone in on the 15-30% of open source vulnerabilities
that are actually in active use within your product.

It also shows exactly where a vulnerable functionality is referenced within the code,
making it much easier for developers to fix vulnerabilities.

Effective Usage Analysis provides automatic prioritization that can reduce remediation efforts,
and help teams fix important vulnerabilities much faster.

EFFECTIVE
Vs.

INEFFECTIVE

• 9THE DEVIL IN THE DETAILS: The Importance Of SBOMs In Protecting The Software Supply Chain

THE MEND EDGE We have covered numerous considerations for selecting an SCA tool for your organization.
The bottom line is that you should select an SCA tool that enables you to minimize risk and
reduces the effort for all of your teams—from management, legal and security through
ops, developers and QA engineers.

Mend is the leading SCA platform. It helps you minimize risk with the lowest
possible effort while fostering a DevSecOps mindset and cooperation across
your organization:

Prioritization
Focus on what really matters. We help you to prioritize the security vulnerabilities that
actually impact your products, and ensure there are no false positives.

Remediation
Alerts are great, and we also provide the fix. Automatically generate fix pull requests,
get direct links to suggested fixes, optimize remediation with full trace analysis and
initiate automated workflows including issue tracker integration.

Completeness
A one-stop-shop for all of your open source usage regardless of your languages or
environments, including containers and serverless. We also support all groups in your
organization: Security, Developers, DevOps.

Simplifying the World of Open Source Usage
We believe the only way to use open source without compromising on security or quality and without slowing down your
developers — is to make this complex process of risk mitigation as simple as possible.

Using open source code should be easy. That’s why we created Mend. Our technology takes care of the heavy lifting that
comes with open source usage. We alert you only when something demands your attention, providing you with all the
information that you need to make the right choices.

How We Bring Order to Chaos
The Mend platform continuously detects all of the open source components used in your products. It then compares
these components against Mend’s database. This database is built by collecting up-to-date information about open source
components from numerous sources, including various vulnerability feeds and hundreds of community and developer
resources. The Mend platform is designed for security and compliance professionals, to give managers everything that
they need in order to control and manage the open source usage within their organization. It allows them to enforce their
policies automatically throughout the SDLC, get real-time alerts on critical issues, and generate up-to-date reports.

It includes a set of tools that fit into the developers’ ecosystem, empowering them to make educated choices, speed up
integration, and quickly find and remediate problematic open source components. Because knowledgeable developers
make better software.

