
THE COMPLETE GUIDE ON
OPEN SOURCE SECURITY

2

Introduction
Open source components are the core building blocks of application
software, providing developers with a wealth of off-the-shelf possibilities
that they can use for assembling their products faster and more efficiently.

Open source components, the libraries and frameworks which are written
and maintained by the open source community, account for 60-80% of the
code base in modern web applications.

Despite the heavy reliance on open source, the software industry has been
generally lax when it comes to ensuring that these components meet basic
security standards. This is due in large part to their underestimation of the
amount of open source components that they are actually using in their
products, and that the nature of open source vulnerabilities are
fundamentally different than those found in proprietary code.

As stories such as the Equifax breach from September 2017, where hackers
stole the personally identifiable information belonging to some 147.9 million
people by exploiting a known, open source vulnerability in one of their web
applications, continue to permeate the ecosystem, organizations are
beginning to understand that they have an imperative to get a handle on
their open source usage and security for their applications.

The need to use secure open source components when building
applications has long been recognized by security organizations, like
OWASP. In 2013, they warned against using third-party components with
known vulnerabilities on their highly regarded OWASP Top 10 list that
details the biggest risks for developers.

This White Paper will break down where the blind spots are in
understanding the risks posed by vulnerable open source components,
how vulnerabilities are discovered and reported, how to address issues
with technologies for more efficient remediation, and approaches to
managing open source security across your organization.

3

Contents
Which is Safer: Open Source or Proprietary Code?

Open Source Vulnerabilities Detection and Publication

Open Source Vulnerability Databases

Remediating Vulnerable Open Source Components

Prioritization of Open Source Vulnerabilities

Join the Security Shift Left Revolution

How Can Software Composition Analysis Help?

Software is Eating the World

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

Conclusion:

4

1Which is Safer:
Open Source or
Proprietary Code?

The common trope from many of those with
concerns over using open source is that the
source code is out there for anyone and
everyone to examine and potentially use for
exploiting their products. They prefer a “black
box” where the source code is supposedly
blocked from view. There are also concerns that
using open source components in their products
could be extra risky since you have no way of
knowing the skills of the author and code review
process, which means that you cannot estimate
the quality and security of the code you
are using.

From the open source camp, Linus Torvalds
of Linux fame, once stated that “given enough
eyeballs, all bugs are shallow.” He argues for
the “thousand eyes” model of open source that
believes that if developers open up their code for
review by the community, then they have a
significantly better chance of catching bugs
which could turn out to be vulnerabilities that
hackers could use for their exploitations. This is
called Linus’ law. In this perspective, developers
believe that they receive better protection — and
often trust — from opening their code up to the
crowd to inspect and offer fixes, than from hiding
behind the high walls of a closed system.

Linus’ law has faced tough questions in recent
years, especially after the Heartbleed and
Shellshock vulnerabilities were discovered, since
they were found many years after the vulnerable
versions were released. Many have argued that
there was plenty of time and eyes that,
according to the theory, should have found these
bugs a long time ago, leading some to question
the validity of Linus’ law.

While a healthy dose of skepticism is generally
a good thing, these critiques appear to fail to
recognize that the context has changed from
the time that Linus issued his law. It is true
that the number of developers who are using

open source projects for their work has grown
exponentially since the time Torvalds wrote it, but
the vast majority of them are only downloading
the libraries and binaries without actually
reviewing the source code itself. This means the
number of users far greater than the number of
eyeballs reviewing the code.

The primary threat of exploiting vulnerable open
source components in applications comes not
from finding unknown vulnerabilities, but from
public databases of known vulnerabilities. These
known vulnerabilities, with the details on which
versions are affected and how the exploit can be
carried out, are available to all with the necessary
information to help security and development
teams perform the necessary fixes to secure their
applications. The flip side is that hackers will also
follow these publications in order to gain free
knowledge of how to carry out attacks with
minimal effort on their part, saving them the work
of having to find their own way into your backend.

There is a silver lining here however, in that
hackers are primarily targeting open source
components with known vulnerabilities, thus
giving the defenders a list of what they need to
defend themselves against — provided that they
know what to look for.

Both of these perspectives raise valid points and
have their own blind spots, which leads us to
the understanding that debating whether open
source or proprietary code is more secure is not
the right question to ask ourselves. Both options
can be very secure or very exploitable
depending on security standards and practices
enforced during the development process.

Instead of choosing a specific open or closed
model, managers need to think about the
process of how they are developing and securing
their software.

Differences of opinion amongst the developer community are as old as
programming itself. One of these debates of course centers around the
question of which type of code is more secure, open source or proprietary?

5

2Open Source
Vulnerabilities
Detection and
Publication

Application security testing tools that can detect vulnerabilities in your code, like SAST, are not
applicable on open source components, as they depend on following a set of guidelines that are
laid out in white lists. This model works just fine when the code is being managed by a single team,
working under a single logic.

Open source, however, is run more as a distributed group of contributors adding their work to the
code. This makes solutions that rely on white lists untenable for testing the code, and will only lead to
a mountain of false positives that no developer wants to run down.

This issue necessitates a different approach for finding vulnerabilities in open source
components. True to its crowd mentality, the managers of these open source projects depend on the
community to help them uncover vulnerabilities and come up with the proper fixes.

This process normally works according to this series of events:

Unlike proprietary code, which uses tools like Static Application Security
Testing (SAST) to detect vulnerabilities, the technology for open source
vulnerability detection works in a different fashion. Why is this?

First, contributors, security researchers, and White Hat hackers from the open source community will
pore over the code, using a combination of automated tools and manual methods to uncover
vulnerabilities in the code. The estimated time when using this process can take over a month to detect
a single open source vulnerability.

When they finally do strike oil and detect a vulnerability in an open source component, they contact the
open source project’s managers, as they are the formal owners of the code and are therefore
responsible for its bugs.

SECURITY
RESEARCHER

CVE NUMBER

+ SECURITY ADVISORIES
+ OPEN SOURCE BUG TRACKER

RELEASE INFO
& FIX

GRACE
PERIOD

NATIONAL
VULNERABILITY

DEFENSE

OPEN SOURCE
PROJECT MANAGER

6

2Now it is up to the open source managers to determine the next step. Although there are no rules
when it comes to the open source bazaar, in most cases, the open source managers will notify MITRE,
the organization behind the CVE database, on their newly discovered vulnerability. However, some
will not issue a CVE ID for the vulnerability, but will provide information in their relevant security
advisory or just their project issue tracker.

The MITRE Corporation is the non-profit U.S. government-backed body that assigns vulnerabilities
unique IDs for tracking Common Vulnerabilities and Exposures (CVE) list. These IDs will include the
year that they were reported, followed by a number. For example, the ID for the Apache Struts 2
vulnerability that was used in the Equifax breach was CVE-2017-5638.

MITRE will then reserve an ID number for the newfound vulnerability without publishing any of the
particulars. Details will be published only once MITRE confirms the vulnerability. Also, in many cases,
they will honor the generally accepted 60-90 day grace period that is given to open source project
managers; time to understand what the vulnerability is and come up with a fix. The idea is that the
project managers should be given a fair shake at fixing their project before news of the vulnerability
goes public.

During this time, the CVE will be in “reserved” mode, meaning that you will only see the relevant
component/s impacted by this vulnerability, but not additional information which may offer
instructions on how to exploit the component. Some CVEs will also be in “reserved” mode if MITRE is
still undecided as to whether there is enough information to confirm that the vulnerability exists and
that it affects the covered product.

There is also a public interest in holding off on publishing for a given period in that a vulnerability
announced too early without a fix would give hackers an easy way to target victims without allowing
the users of these open source components the tools to protect themselves with. On the flip side,
the grace period is limited so as not to allow a vulnerability to stay unaddressed for an indeterminate
amount of time during which it could be found and used by scofflaws to carry out attacks.

Once there is a fix or the grace period has ended, the vulnerability is published, making its
appearance on the National Vulnerability Database (NVD) with a CVSS score (impact metric) for all to
see. Publication normally takes approximately two business days. Once the CVE is online, it starts the
clock on the race for companies to patch their systems before the hackers begin their assault on
organizations using the vulnerable component.

Unfortunately, not all vulnerabilities are reported to MITRE’s CVE database. Some open source project
managers, or the researchers who discovered the vulnerability, may choose to publish the details in
security advisories like Node Security, RubySec, Linux Security, and others. There are also instances
when they will only add it to their own open source project issue tracker and these vulnerabilities do
not receive a CVE number and therefore do not appear in the CVE or the NVD databases.

While it will often take a few days to weeks for the information to be published in the CVE, it is more
likely that they will show up first in these smaller repositories.

Because of these variations in reporting practices, information on open source vulnerabilities is
significantly distributed amongst many different sources and requires a multipronged effort to properly
compile the relevant details.

7

3Open Source
Vulnerability
Databases
As previously explained, the information on open source vulnerabilities
is distributed among many different databases, repositories and issue
trackers, which makes life for security and development teams much
harder when it comes to manually detecting which of their open source
components are vulnerable.

There is a common analogy used in the open source community for understanding the distributed
nature of this space, as was noted in the second chapter, often referred to as the Cathedral and the
Bazaar, an idea that comes from Eric S. Raymond’s book of the same title.

In highly structured systems, the Cathedral, all information and development flow through a set
process based on management decisions. For vulnerability management, we can think about how a
directed group of researchers in a certain organization will follow specific guidelines for how they work
to detect vulnerabilities, and where they send their findings once validated.

However, we know that the open source community simply does not work in this fashion. Instead, we
have a Bazaar that is comprised of information coming from multiple sources, spread out to form an
array of resources, each differing from the next with wares that are not easily organized. From a
security research perspective, we know that failing to incorporate the information coming from this
disorganized crowd, thus risking missing out on crucial vulnerabilities, could bring harm to
our products.

To get a sense of where security professionals should be looking for information about new
vulnerabilities, here below are a number of key resources to follow:

1 - CVE Database by MITRE
The CVE database program was launched in 1999 by the MITRE Corporation, a non-profit
organization, with U.S. government funding (DHS). The program’s mission is to catalog and identify all
known vulnerabilities, for both open source and commercial components.

The CVE uses a claim-based model to vet new vulnerabilities or exposures submitted by researchers
or project managers. Based on their credibility, they may be asked to provide evidence of a
demonstrated negative impact, such as an example/scenario where the flaw is exploitable. The
stronger the claim, the more likely it is that they will get a CVE ID.

2 - NVD by NIST
The NVD is maintained by the U.S. government’s National Institute for Standards and Technology
(NIST) and it is responsible for analyzing the vulnerabilities that are posted on the CVE database.

The NVD’s analysis includes determining impact metrics, vulnerability type (CWE), application
statements (CPE), and other pertinent metadata. The NVD does not actively perform vulnerability
testing, relying on vendors and third-party security researchers to provide them with information that
is then used to assign these attributes.

It analyzes the vulnerabilities based on the Common Vulnerability Scoring System (CVSS) method,
which works on a 1 (lowest) through 10 (highest) number scale. Currently, the NVD supports both
CVSS versions 2 and 3.

The NVD is updated within two business days from whenever a new vulnerability is reported to the
CVE database, excluding reserved CVEs, as no data is provided in these cases.

8

3 3 - VulnDB by Risk Based Security (previously based on the OSVDB)
The Open Source Vulnerability Database (OSVDB) was an initiative launched in 2004 by Jake Kouns.
His idea was to have an independent database that would provide the noncommercial sector with
detailed information about vulnerabilities. By some reports, their database contained over 100,000
vulnerabilities in its records.

However, the initiative ran into trouble when commercial enterprises began heavily using the
database without supporting it financially, leading to the project shutting down its nonprofit work in
April of 2016. Kouns later transformed the OSVDB into its commercial iteration under the umbrella of
his company, Risk Based Security, relaunching it as VulnDB.

Today, the database is no longer maintained by thousands of contributors from the open source
community, but by a handful of security researchers. The database is also not publicly available and
companies need to buy a subscription. Risk Based Security continues to claim that it has 20% to 25%
more known vulnerabilities reported in their database compared to the CVE listing. However, this
claim of the significant gap has never been independently verified.

4 - GitHub Issue Tracker
GitHub is arguably the go-to site for developers, hosting 67 million repositories. Developers use the
site for sharing and finding open source components. In 2009, the site launched their GitHub Issue
Tracker where developers could flag issues like vulnerabilities or bugs in order to bring them to the
attention of the crowd with hopes of having them resolved.

This method of drawing information from the community is very much in line with the open source
ethos, and is downright practical since it sits where the developers already are. It includes important
features like allowing the users to vote on which issues they want to see addressed, ideally helping
to raise the most pressing issues to the top. Essentially, it cuts the distance between the user and
project manager, making it more likely that vulnerabilities will be reported.

5 - Node Security Platform (NSP)
The NSP provides security information in Node.js modules and NPM dependencies. The platform is a
suite of security products and tools, of which the advisory is just one aspect. Their database receives
information from a large, active community and it draws from the scans it does on NPM modules.

6 - RetireJS
RetireJS is an open source, JavaScript-specific dependency checker. RetireJS also made a
site-checking service available to JS developers who want to find out if they are using a JavaScript
library with known vulnerabilities. It retrieves its vulnerability information from the NVD as well as
a multitude of other sources, including mailing lists, bug-tracking systems, and blogs for popular
JavaScript projects.

7 - Linux Security
Linux Security is the largest vulnerability database related to Linux components. Categorized per
Linux distribution, it covers almost 20 Linux distributions. Like all other major advisories, it is fed by
both the community and NVD scanning solutions.

8 - RubySec
RubySec provides security resources and information for the Ruby community. Their advisory
database sources information from both their community and scans of the NVD.

Open Source Projects Issue Trackers
Again, true to the distributed model of open source, not all information will be reported to the CVE
database or any advisory. In these cases, your only chance of learning about the vulnerability is from
the open source project’s issue trackers.

The difficulty here, from a security perspective, is that these issue trackers are primarily used for
reporting bugs in the software that affect functionality, the core concern for developers, so pulling out
the security specific issues can be like finding a needle in a haystack. On the other hand, like we see
with the GitHub Issue Tracker, this is one of the first places that developers will create alerts about
problems so these can be real goldmines if you have the patience to sort through them.

9

4Remediating
Vulnerable
Open Source
Components

When a potential vulnerability is detected in your
proprietary code, the developers who wrote the
code can research and validate the vulnerability
and even find a fix, if needed. But when it comes
to open source vulnerabilities it is an entirely
different game.

To start off, a known vulnerability has already
been validated. It is not a potential issue, but a
real weakness in your application. The only
question is whether your application is making
calls to the vulnerable functionality or not.

If you are impacted by this vulnerability, then how
can you remediate it? After all, when developers
pull an open source component from a
repository, they usually take the component “as
is” and integrate it without gaining deep
familiarity with the code.

This makes sense as long as the code is
working well and there are no vulnerabilities
since it allows developers to gain additional
functionality without the need to do a deep dive
into the code.

The problem arises when an issue is found and
their lack of familiarity with the code means that
the developers are reliant on the open source
project contributors community to provide them
with a fix. In cases where the vulnerability lies in
one of the many dependencies, the developer
will most probably not even have the
understanding of where and how they are using
the vulnerable functionality. This makes coming
up with a fix that does not affect other products a
significant challenge.

The good news here is that 87% of the
vulnerabilities in the CVE database have at least
one fix offered by the open source community,
directing developers on the necessary steps for
making their code safe again. However, just like
with information on vulnerabilities, the
information of remediation is also distributed
among many repositories and issue trackers.
This can make life for security and development
teams much harder when it comes to figuring out
what is the recommendation of the open
source community.

In contrast to proprietary code, which is written in-house by an
organization’s developers, remediating issues with open source
components follows a whole other set of rules.

10

4 FIVE WAYS TO ADDRESS VULNERABILITY

1 - Patching
The preferred way to fix a vulnerability, these patches are usually
released by the project managers, sometimes based on work provided
to them by contributors to their projects. These patches hold the top
spot because they are able to focus on fixing the specific functionality in
the component that is vulnerable without impacting the rest of
the component.

2 - Updating the Source File
The next stage of action is the option of updating the specific source file
that is vulnerable, which is preferable to switching out the entire version
of the component. The upside is that the impact to the rest of the
component is still relatively contained.

Again, there is the possibility that there might not be an updated source
file provided for swapping with the vulnerable one, or the issue could be
more widespread than just the single source file, meaning that greater
resources are required.

3 - Updating to a Newer Version
If more targeted options that allow developers to switch out specific
files are unavailable, it might be time to go deep and update to a newer
version of the component.

This can be a headache for developers, since it takes time and can
affect functionality until they get the settings right, but it is also best
practice. Contributors to open source projects put their valuable time in
to improve the code for version updates, fixing bugs and vulnerabilities
to make a better piece of code available to users.

Active projects can release multiple versions a year, so staying on top
of them can be a challenge for busy developers. Still, it is strongly
recommended to stay up-to-date on the most current versions.

4 - Reconfiguring
Part of the remediation process when significant changes occur will likely
include some level of reconfiguration to the code to make sure that
functionality is retained despite the changes. This is because the patch,
new version, or other measure taken to address the vulnerability can
have significant differences from the previous configuration, and need
to be reworked. The difficulty involved here can vary depending on how
much change is required, but without this step, developers risk their
efforts to defend their product being for naught.

5 - Finding an Alternative Component
If all else fails in attempting to patch the vulnerable component,
developers may be forced to find an alternative component that can still
fulfil the necessary functions.

While clearly an undesirable option, as it could require more intensive
reconfiguration of the product, there is always the possibility that it might
work out better than the previous component and provide new ways to
incorporate the features that they require.

11

5Prioritization of Open
Source Vulnerabilities

The challenge is that with the massive usage of
more open source components in applications,
there will statistically also be a rise in the
number of newly discovered vulnerabilities that
developers will have to address. In 2017 alone,
more than 3,000 open source vulnerabilities were
added to the CVE, impacting tens of thousands
of components. As open source usage continues
to rise, 2018 is likely to see even more.

Adding to the calculation is the fact, that as
noted previously, a single component can come
with a long list of direct and transitive
dependencies, each of which can cause trouble
if they are found to be vulnerable.

In order to handle this sizable workload while still
trying to meet rapid release schedules,
developers need to find ways to prioritize which
issues need to be fixed first. There is an obvious
consideration for wanting to tackle the
vulnerabilities with the highest CVSS scores,
such as vulnerabilities that could give hackers
remote execution access to their systems.

However, there are additional factors that need
to be taken into account when prioritizing your
team’s plan of action. You need to first tackle the
vulnerabilities that have the highest impact on
the security of your product even before
concerning yourself with their CVSS scores.

So how do we determine which parts of the
component should be your top priority?

Open source components are reusable and are
usually developed to fit different customers and
use cases. Therefore, open source components
tend to package many functionalities. As
developers are using open source components
“as is”, meaning using the entire package and
not just a snippet for supportability purposes, in
most cases the application is making calls to only
a rather small percentage of the functionalities
in each component. These are called effective
functionalities.

So, what is the impact of the functionalities that
are not being effectively used by the product?
They are not having an impact on the product as
the proprietary code is not making calls to
that functionality. This can be understood as
being an ineffective functionality since it is

essentially cut off from the rest of the chain that
comprises our functionalities which serve our
application.

Discerning between which functionalities are
effective or ineffective is important for helping
developers prioritize which vulnerabilities need
to be fixed first. Since we know that only
effective functionalities can affect our product,
then it would follow that those are the ones that
need to be at the top of the list for remediation if
they are found to contain a vulnerability.

Contrast this with ineffective functionalities that
have vulnerabilities. Since they do not have an
impact on our product, then they are
categorically a lower priority for developers
to work on.

Our preliminary research on vulnerabilities in Java
products shows that only 30% of the
vulnerabilities are deemed to be within
functionalities that are effective and can have an
actual impact on the security of your product.
Conversely, this means that the remaining 70%
of vulnerabilities detected in these products that
while still considered vulnerable, do not have an
impact on your product as they lie within
ineffective functionalities.

By being able to narrow down our resolution of
which vulnerable components are effective, and
which are not, developers can considerably
improve their efficiency by allowing them to
focus on the critical issues that require their
attention. The capability of prioritizing the
effective vulnerable components will not only
improve the security of your applications, but it
will also increase the level of engagement and
cooperation you will get from your developers.

Developers love open source components in large part because they save
them the time and effort that would otherwise go into writing in-house
code for the functionalities they need in their products. Why reinvent the
wheel when you can just make a pull request from GitHub, right?

30%70%

PASSIVE

EFFECTIVE

12

6
Join the Security
Shift Left Revolution

In order to ensure you will be able to detect issues as quickly as possible and remediate, you need to
automate the entire process of detecting and remediating open source vulnerabilities. It is also very
important to understand the unique opportunity of shift left when it comes to open source security
when automating your processes.

So What is the “Shift Left” Concept?
The growing challenge of speeding up the development process without compromising on the
quality of each release was one of the main drivers to the mass implementation of the shift left
concept. The idea behind “shift left” is to incorporate software testing earlier in the process and
automate it. By moving software testing closer to the developer (that is, to the “left” of the delivery
chain), teams are able to detect issues earlier in the development process when they are easier,
quicker, and cheaper to fix.

Improving your ability to detect and remediate open source vulnerabilities
is not enough to secure your application, since the minute an open source
vulnerability is published, developers are in a race against time to
implement their fixes before they are targeted by hackers.

Shift left testing has been focused on software testing in the beginning, but security started to join the
party in recent years. The transition of DevOps to DevSecOps stems from this trend of incorporating
automated security tests to the coding stage. Automation is a key enabler for shifting testing to earlier
stages of the software development process.

Q
A

JO
B

 START
REQ

U
IREM

EN
TS

D
O

C
U

M
EN

TATIO
N

CO
N

C
EPT/

D
ESIG

N

RO
U

TIN
G

C
LIEN

T REVIEW

C
LIEN

T REVIEW

RELEASE

FIN
AL REVISIO

N
S

&
 TESTIN

G

REVISIO
N

S
D

EVELO
PM

EN
T

RO
U

TIN
G

REVISIO
N

S
TESTIN

G

TESTIN
G

REVISIO
N

S

SDLC

WHITESOURCE
MODEL

TYPICAL
MODEL

13

6
When it comes to securing the open source components in your software, the potential for shifting
left is much greater than in proprietary code. The reason is that with open source security, all the
information is already public and available and you do not need to run time intensive tests in order
to detect the issues. This means that you can actually detect components with known vulnerabilities
before even downloading a component and integrating it with your product.

It is true that the information is not easily accessible as it is spread across many different databases
and most repositories are not searchable. However, there is a great potential for improving the overall
quality and security of your products with the publicly available information that is accessible.

Software Composition Analysis (SCA) tools are able to make this information accessible as they
aggregate the public information and index it in real-time, so you can ensure the open source
components your developers are selecting are safe before they even download them.

Providing information on open source components to developers will help empower them to make
better choices when selecting the open source components they intend to use. This is a huge
advantage that shifts security all the way to the left.

SCA tools are shifting left open source management as a whole, and not only the security aspect,
since software teams need to ensure compliance with open source licenses, ensure the quality of
the newly added open source components, and detect newly released versions with performance
improvements, new functionalities, and/or fixes for bugs.

Even as shifting left helps to improve your software development process, it is not sufficient on its own
as your sole practice for managing your open source components. In many cases, a vulnerability is
found years after the impacted version was released and it may already be in deployed products. This
means that companies should not only shift their open source security, they should also “shift right”
to deal with newly discovered issues By shifting right we mean that companies need to continuously
review their open source inventory of deployed products to ensure they have not become exploitable
to newly discovered vulnerabilities. This more comprehensive coverage throughout the application
lifecycle is yet another important capability that most SCA tools are offering.

FIND DURING
DEVELOPMENT

PER DEFECT PER DEFECT PER DEFECT PER DEFECT

$80 $240 $960 $7,600
FIND DURING

BUILD
FIND IN

PRODUCTION
FIND DURING

QA / TEST

CODING BUILD QA SECURITY PRODUCTION

Shifting security testing “left” helps developers to detect issues before it becomes complex “tear and
replace” operations, and therefore become more complex and costly. According to the Ponemon
Institute’s “The Cost of Data Breach” research, the cost of replacing a vulnerable component during
the coding stage of the development process costs only ~1% of the cost of replacing the same
component post deployment.

14

7How Can Software
Composition
Analysis Help?
While not perfectly synonymous to the term of open source management,
Software Composition Analysis is the industry tool aimed at helping
organizations to get a handle on their open source usage. When it was
initially coined, it was meant to reference the process of creating inventory
reports that could provide managers visibility over the composition of the
components in their software.

As time progressed, software development and security managers understood that they need much
more than a mere inventory of their open source components, including dependencies. They need to
ensure that they are using high-quality open source components without known vulnerabilities and
open source licenses that fit their organization and business model.

Currently, there are three technologies of SCA tools in the market:

 • Open source code scanning

 • Continuous open source components analysis

 • Open source effective usage analysis (or components impact analysis)

Capabilities and accuracy differ between technologies and vendors, but the key functionalities
are considered to be the following:

 • Generating open source inventory reports, including all dependencies

 • Identification and alerting on vulnerable open source components

 • Identification of open source licenses to ensure compliance

 • Ability to enforce license and security policies

Integration throughout the software development lifecycle (SDLC), automated workflow and policies,
broad coverage of programing languages, and more are considered advanced capabilities.

15

7Open Source Code Scanning
Back in 2002, a startup named Black Duck Software introduced a solution that can identify open
source code in software products. Its technology was based on code scanners, which identified
pieces of code (aka code snippets) which matched open source code contained in its database.

All matches were reported, but due to obvious reasons, this technology resulted in a high
percentage of false positives (proprietary and commercial pieces of code being identified as open
source) that were time consuming to sift through and validate. Therefore, professional services were
sold in addition to the software to eliminate false positives by process of
manual verification.

Legal teams in large enterprises were the first to embrace this technology to reduce their license
compliance risks, while others preferred to stick with manual processes as code scanners were very
expensive and labor intensive.

Open Source Component Analysis
The needs of software teams changed through the years as deployment frequency increased and
the awareness of open source security vulnerabilities rose, especially following the Heartbleed
vulnerability. As code scanners were based on a periodical scan, they were not capable of supporting
agile methodologies or help teams secure their applications.

In 2011, WhiteSource revolutionized the market by introducing a new technology that it developed to
meet the needs of modern agile software teams. The new solution offered an intuitive, affordable tool,
which integrates with all stages of the SDLC to detect issues in real-time.

Components are detected by calculating the digital signatures of all libraries, and then
cross-referencing those signatures with a database of open source components. This technology
enables software teams to not only detect open source components in their repositories and build
processes, but also block problematic components from entering their software. The different
vendors vary in their coverage, detection accuracy, and automation capabilities.

Open Source Effective Usage Analysis
When using open source components, you are seeking to leverage a functionality that has already
been developed for a different, even if similar, purpose. That is why open source components tend to
package many functionalities, but each application is using only a small percentage of these
functionalities. This means that the proprietary code is making calls to only a small portion of the code
contained within the component.

This new generation of SCA tools provides development and security teams visibility to how they are
consuming the vulnerable functionalities in their code and not merely stating which vulnerabilities are
present in their application. Effective usage analysis offers that ability to prioritize remediation of the
vulnerabilities that are truly impacting your code.

As open source usage continues to increase and the number of reported open source vulnerabilities
are growing every quarter, teams need this additional layer of analysis in order to prioritize between
the dozens to hundreds of vulnerable open source components found in their applications.

This technology also provides developers full traceability analysis to help them understand how they
are consuming each vulnerable functionality and support finding the best and quickest
remediation path.

16

C
on

cl
u

si
on

Software is
Eating the World
In 2011, star venture capital investor Marc Andreessen wrote an article in the Wall Street Journal titled

Why Software is Eating the World, where he predicted that software companies would take an

outsized role in the economy, punching far above their weight with intensive growth.

Andreessen’s predictions have since been vindicated, with software playing a core part of modern life,

guiding us through how we work, build businesses, and even interact with our refrigerators.

Applications are at the center of this revolution, providing the gateway through which we interact with

the powerful technologies and companies that are powering this change. In order to keep up with the

demand, developers will continue to rely on open source components to work faster and smarter.

However, with great power comes great responsibility, and the obligation on the part of organizations

to use open source components securely. If recent years are any indication, attacks by hackers on

applications are only going to increase, and the powerful open source components that we use to

build our applications are an easy target if left unprotected. The transparency and spirit of openness

that makes open source the backbone of the software development industry leaves it exposed to

attacks by those who take advantage of the publicly available resources like the NVD.

SCA tools offer companies the ability to take control of their open source security from the start,

enforcing policies throughout the software development lifecycle (SDLC), and improving workflows

by making all team members responsible for the security of their products.

If companies wish to remain competitive in the market, they will need to embrace a stance where they

are open to the innovation that open source allows them to achieve, while adopting the tools,

organizational culture, right mindset and best practices that are required of them as

responsible actors.

VISIT OUR WEBSITE

https://www.whitesourcesoftware.com/

